Nonsqueezing Property of the Coupled Kdv Type System without Miura Transform

نویسنده

  • SUNGHYUN HONG
چکیده

We prove the nonsqueezing property of the coupled Korteweg-de Vries (KdV) type system. Relying on Gromov’s nonsqueezing theorem for finite dimensional Hamiltonian systems, the argument is to approximate the solutions to the original infinite dimensional Hamiltonian system by a frequency truncated finite dimensional system, and then the nonsqueezing property is transferred to the infinite dimensional system. This is the argument used by Bourgain [3] for the 1D cubic NLS flow, and Colliander et. al. [6] for the KdV flow. One of main ingredients of [6] is to use the Miura transform to change the KdV flow to the mKdV flow. In this work, we consider the coupled KdV system for which the Miura transform is not available. Instead of the Miura transform, we use the method of the normal form via the differentiation by parts. Although we present the proof for the coupled KdV flow, the same proof is applicable to the KdV flow, and so we provide an alternative simplified proof for the KdV flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Non-squeezing of the Kdv Flow

We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle T. The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [13]. Unlike the work of Kuksin [21] which initiated the investigation of non-squeezing results for infinite dimensional Ha...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Complete integrability and the Miura transformation of a coupled KdV equation

In this letter, a Painlevé integrable coupled KdV equation is proved to be also Lax integrable by a prolongation technique. The Miura transformation and the corresponding coupled modified KdV equation associated with this equation are derived. © 2010 Published by Elsevier Ltd

متن کامل

The Inverse Scattering Transform for the Kdv Equation with Step-like Singular Miura Initial Profiles

We develop the inverse scattering transform for the KdV equation with real singular initial data q (x) of the form q (x) = r′ (x) + r (x), where r ∈ Lloc, r|R+ = 0. As a consequence we show that the solution q (x, t) is a meromorphic function with no real poles for any t > 0.

متن کامل

The Cole-hopf and Miura Transformations Revisited

An elementary yet remarkable similarity between the Cole-Hopf transformation relating the Burgers and heat equation and Miura's transformation connecting the KdV and mKdV equations is studied in detail. 1. Introduction Our aim in this note is to display the close similarity between the well-known Cole{Hopf transformation relating the Burgers and the heat equation, and the celebrated Miura trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016